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Abstract

The vibration of beams with double delaminations has been solved analytically without resorting to
numerical approximation. The beam is analyzed as five interconnected beams using the delaminations as
their boundaries. The continuity and boundary conditions are satisfied between adjoining beams. Classical
beam theory is applied to each of the beams. A new slenderness ratio specific for vibration is introduced,
which is shown to dominate the vibration behavior of the beam. Global, mixed and local vibration modes
occur depending upon the slenderness ratios of the delaminated beams. Different vibration behaviors
emerge for different sizes, depths, spanwise locations and relative slenderness ratios of the delaminations.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Delaminations are one of the most common defects in composite laminates due to their
relatively weak interlaminar strengths. They may arise during fabrication, such as incomplete
wetting, or during service, such as low-velocity impact. The presence of delaminations may cause
changes to the vibration parameters of a composite laminate, such as the natural frequency and
the mode shape. In particular, delaminations reduce the natural frequency, which may cause
resonance if the reduced frequency is close to the working frequency. It is imperative that we
should be able to predict the change in the frequency, as well as the mode shape, in a dynamic
environment.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Wang et al. [1] examined the free vibrations of an isotropic beam with a through-width
delamination by using four Euler–Bernoulli beams that are joined together. By applying
appropriate boundary and continuity conditions, the response of the beam was obtained as a
whole. However, the vibration modes are physically inadmissible for off-midplane delaminations
because the delaminated layers were assumed to deform ‘freely’ without touching each other and
thus have different transverse deformations (‘free mode’). Mujumdar and Suryanarayan [2] then
proposed a model based on the assumption that the delaminated layers are ‘constrained’ to have
identical transverse deformations (‘constrained mode’). Similar ‘constrained mode’ approach was
used by Tracy and Pardoen [3] on a simply supported composite beam, Hu and Hwu [4] on a
sandwich beam and Shu and Fan [5] on a bimaterial beam. The ‘constrained mode’ analysis,
however, failed to explain the opening in the mode shapes found in the experiments by Shen and
Grady [6]. To capture the opening in the mode shapes found in the experiments [6], Luo and
Hanagud [7] proposed an analytical model based on the Timoshenko beam theory, which uses
piecewise-linear springs to simulate the ‘open’ and ‘closed’ behavior between the delaminated
surfaces.

The above works are on one-dimensional beam plates with a single delamination. Two-
dimensional plates with a single delamination have mostly been numerically investigated. Zak et
al. [8,9] used the finite element methods in their study. They modeled the delaminated region by
using additional boundary conditions at the delamination fronts. Chattopadhyay et al. [10], Radu
and Chattopadhyay [11] and Hu et al. [12] presented finite element methods using higher-order
deformation theories.

In practice, multiple delaminations, as well as double delaminations appear frequently in
composite laminates, such as those resulting from transverse impact [13–15]. The multiple
delaminations have been studied by a number of researchers. Shu [16] presented an analytical
solution to study a sandwich beam with double delaminations. His study emphasized on the
influence of the contact mode, ‘free’ and ‘constrained’, between the delaminated layers and the
local deformation at the delamination fronts. Works by Shu and Mai [17–19] on delamination
buckling investigated the local deformation near the two fronts of delamination and identified the
rigid connector and the soft connector conditions. The cross-section in a rigid connector remains
perpendicular to the deformed midplane of the beam, and thus takes account of the differential
stretching between the delaminated beams. The cross-section of a soft connector remains
perpendicular to the undeformed beam, and thus neglects the differential stretching. Lestari and
Hanagud [20] studied a composite beam with multiple delaminations using the Euler–Bernoulli
beam theory with piecewise-linear springs to simulate the ‘open’ and ‘closed’ behavior between the
delaminated surfaces. Lee et al. [21] studied a composite beam with arbitrary lateral and
longitudinal multiple delaminations using the ‘free mode’ analysis and assumed a constant
curvature at the multiple-delamination tip. Finite element analyses have been presented by Ju et
al. [22] using the Timoshenko beam theory and Lee [23] using the layerwise theory.

Similarly with the single delamination case, two-dimensional plates with multiple delaminations
have been numerically investigated. Finite element methods have been developed by Ju et al. [24]
using the Mindlin plate theory, Cho and Kim [25] using the higher-order zig-zag theory and Kim
et al. [26,27] using the layerwise theory.

The current work presents an analytical solution to the free vibration of beams with double
delaminations by treating the beam as five interconnected beams using the delaminations as their
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boundaries. Classical beam theory is applied to each of the beams. A new slenderness ratio specific
for vibration is introduced. The analysis shows complicated vibration modes depending upon the
slenderness ratio of the delaminated surface layer. The results further show that the natural
frequency is sensitive to the depth, length and spanwise location of the delaminations and the
relative slenderness ratio after some threshold values of the depth, the length, the spanwise
location or the relative slenderness ratio.
2. Formulation

Fig. 1(a) shows a beam with length L and thickness H with two delaminations. The two
delaminations are of identical length a and located at a distance d from the center of the beam.
The beam is analyzed as five interconnected beams. The beam is divided into virgin beams 1 and 5,
and the delaminated beams 2, 3 and 4 (Fig. 1b).

Two assumptions were made in the literature on delamination buckling and vibrations. The
first concerns the complicated changing contact between the delaminated layers. Wang
et al. [1] assumed that the delaminated layers deformed ‘freely’ without touching each other,
which was shown to be physically inadmissible [2]. Mujumdar and Suryanarayan [2] then
proposed a ‘constrained’ mode where the delaminated layers are assumed to be in touch along
their whole length all the time, but are allowed to slide over each other. The second assumption
concerns the deformation of the delamination fronts. Two possibilities were examined by Shu and
Mai [17–19], the ‘rigid’ and the ‘soft’ connectors. A rigid connector takes full account of the
differential-stretching between the delaminated layers while a soft connector disregards the
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Fig. 1. (a) Geometry of a beam with double delaminations; (b) the beam which is modeled as five interconnected

beams.
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differential-stretching between the delaminated layers. Studies by Shu and Mai [18] show
that the real delamination fronts lie between the two connectors, but closer to the rigid connector
(Fig. 2). Further studies show that the natural frequencies obtained using the rigid connector were
closer to the experimental values than the frequencies obtained using the soft connector [16].
In this research, the ‘free’ and ‘constrained’ modes and the rigid connector are considered in
the analysis.

When the beam vibrates, the thinnest amongst beams 2, 3 and 4 tends to have a higher
magnitude of deformation than the thicker ones. However, the thinnest beam may be constrained
by the others, and they have to vibrate together in a constrained mode. This greatly complicates
the problem, the following cases are then considered:
1.
 Free mode: H44H34H2 during upward motion, or H24H34H4 during downward motion.
Without loss of generality, H44H34H2 is chosen (Fig. 3a). In this case, the delaminated
beams 2, 3 and 4 vibrate freely and have different transverse deformations.
2.
 Partially constrained mode: H44H24H3 during upward motion, or H24H44H3 during
downward motion. H44H24H3 is chosen (Fig. 3b). Although the thinnest beam 3 vibrates
first, it will impinge on and be stopped by the thicker beam 2. The two beams vibrate together
which will be followed by the thickest beam 4.
3.
 Constrained mode: H24H34H4 or H24H44H3 during upward motion, or H44H34H2 or
H44H24H3 during downward motion. Both H44H34H2 (Fig. 3c) and H44H24H3 are
chosen and the results will be compared with the results of cases 1 and 2. The two thinner
beams 2 and 3 are constrained by the thickest beam 4 and the three beams vibrate together. The
formulation of the ‘partially constrained mode’ is similar to the free mode and the constrained
mode and is omitted for the sake of brevity. The following sections present the formulation of
the free mode and the constrained mode, respectively, for the vibration of a beam with double
delaminations.
undeformed midplane 

soft

actual 

deformed midplane rigid

actual 

(a) (b) 

Fig. 2. (a) The soft connector; (b) the rigid connector.
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Fig. 3. The beam can either vibrate freely or in a constrained manner. (a) Free mode; (b) partially constrained mode;

(c) constrained mode.
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2.1. Free mode

The governing equations for the free vibrations of a delaminated beam using the classical
Euler–Bernoulli beam theory are

EIi

q4wi

qx4
þ riAi

q2wi

qt2
¼ 0 ði ¼ 1; . . . ; 5Þ; (1)

where EIi is the bending stiffness of the ith beam, ri is the mass density and Ai is the cross-
sectional area. For plain-stress problem, E is the Young’s modulus. For plain-strain problem, E
would be replaced by an equivalent Young’s modulus E ¼ E=ð1 � u2Þ; where u is Poisson’s ratio.

For free vibrations

wiðxi; tÞ ¼ W iðxiÞ sinðotÞ; (2)
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where o is the natural frequency and Wi is the mode shape. Substituting Eq. (2) in Eq. (1) and
eliminating the trivial solution sinðotÞ ¼ 0; one can obtain the generalized solutions of the
differential equation in Eq. (1) as

W iðxÞ ¼ Ci cos li
x

L

� �
þ Si sin li

x

L

� �
þ CHi cosh li

x

L

� �
þ SHi sinh li

x

L

� �
; (3)

where

l4
i ¼

o2riAi

EI i

L4 (4)

and where li is the non-dimensional frequency. The 20 unknown coefficients Ci, Si, CHi and SHi

are determined by 4 boundary conditions and 16 continuity conditions.
The appropriate boundary conditions that can be applied at the supports, x ¼ x1 and x ¼ x4;

are W i ¼ 0 and W 0
i ¼ 0; if the end of the beam is clamped; W i ¼ 0 and W 00

i ¼ 0 , if simply
supported; W00

i ¼ 0 and W 000
i ¼ 0; if free where i ¼ 1 and 5 and prime 0 denotes differentiation with

respect to the x-coordinate.
The continuity conditions for deflection and slope at x=x2 are

W 1 ¼ W 2; W 1 ¼ W 3; W 1 ¼ W 4; (5)

W 0
1 ¼ W 0

2; W 0
1 ¼ W 0

3; W 0
1 ¼ W 0

4: (6)

From Fig. 4, the continuity for shear and bending moments at x=x2 are

V1 ¼ V2 þ V3 þ V4; (7)

M1 ¼ M2 þ M3 þ M4 þ P2
H2

2

� �
þ P3 H2 þ

H3

2

� �
þ P4 H2 þ H3 þ

H4

2

� �
; (8)

where

Vi ¼ �EIiW
000

i ; (9)

Mi ¼ �EIiW
00

i ði ¼ 1; . . . ; 4Þ: (10)
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Fig. 4. Continuity of shear and moment at the delamination boundary x ¼ x2:
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The axial forces Pi can be solved from the compatibility between the stretching/shortening of
the delaminated layers and axial equilibrium [2], thus

P3a

E3A3
�

P2a

E2A2
¼ ðW 00

1ðx2Þ � W 00
5ðx3ÞÞ

H2 þ H3

2
; (11)

P4a

E4A4
�

P3a

E3A3
¼ ðW 00

1ðx2Þ � W 00
5ðx3ÞÞ

H3 þ H4

2
; (12)

P1 ¼ P2 þ P3 þ P4 ¼ 0: (13)

Eqs. (7) and (8) can then be expressed as

EI1W 000
1 ¼ EI2W 000

2 þ EI3W 000
3 þ EI4W 000

4 ; (14)

EI1W 00
1 þ

ðH þ H3Þ
2E2A2E4A4 þ ðH2 þ H3Þ

2E2A2E3A3 þ ðH3 þ H4Þ
2E3A3E4A4

4aðE2A2 þ E3A3 þ E4A4Þ

�ðW 0
1ðx2Þ � W 0

5ðx3ÞÞ ¼ EI2W 00
2 þ EI3W 00

3 þ EI4W 00
4: ð15Þ

The second term on the left of Eq. (15) represents the contribution to the bending moment from
the differential stretching between beams 2, 3 and 4 and contributes to the bending stiffness of the
beam. This term is considered in the rigid connector assumption but neglected in the soft
connector.

Similarly, we can derive the continuity conditions at x ¼ x3: The boundary conditions and the
continuity conditions provide 20 homogeneous equations for 20 unknown coefficients Ci, Si, CHi

and SHi. A non-trivial solution for the coefficients exists only when the determinant of the
coefficient matrix vanishes. All the components in the matrix are expressed in terms of the
frequency o; which must be input to the computer before an LDU decomposition is performed.
The input of the expressions in the 20� 20 matrix and the subsequent LDU decomposition have
to be done with care to ensure successful operation.
2.2. Constrained mode

For the constrained mode the governing equations are

EIi
q4wi

qx4
þ riAi

q2wi

qt2
¼ 0 ði ¼ 1 and 5Þ: (16)

For delaminated beams 2, 3 and 4, we have

ðEI2 þ EI3 þ EI4Þ
q4w2

qx4
þ ðr2A2 þ r3A3 þ r4A4Þ

q2w2

qt2
¼ 0: (17)

The generalized solutions for the constrained mode are identical in form to the free mode. The
unknown coefficients Ci, Si, CHi and SHi, however, are reduced to 12 coefficients which can be
determined by 4 boundary conditions and 8 continuity conditions.
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The continuity conditions for deflection, slope, shear and bending moments at x ¼ x2 are

W 1 ¼ W 2; (18)

W 0
1 ¼ W 0

2; (19)

EI1W 000
1 ¼ ðEI2 þ EI3 þ EI4ÞW

000
2 ; (20)

EI1W 00
1 þ

ðH þ H3Þ
2E2A2E4A4 þ ðH2 þ H3Þ

2E2A2E3A3 þ ðH3 þ H4Þ
2E3A3E4A4

4aðE2A2 þ E3A3 þ E4A4Þ

�ðW 0
1ðx2Þ � W 0

5ðx3ÞÞ ¼ EI2 þ EI3 þ EI4ð ÞW 00
2: ð21Þ

Similarly, we can derive the continuity conditions at x ¼ x3: For the constrained mode, the
boundary conditions and the continuity conditions provide 12 homogeneous equations for 12
unknown coefficients Ci, Si, CHi and SHi.
3. Results and discussions

This section presents the results obtained using the analytical model described above to study a
clamped–clamped homogeneous beam with double delaminations. To verify the accuracy of the
present results, a comparison with published results on a single delamination is made. The first
three non-dimensional natural frequencies of a clamped–clamped beam with a midplane and
central delamination having various lengths are compared with the analytical results of Wang et
al. [1] and finite element method results of Lee [23]. Tables 1–3 show good agreement between the
present results and the analytical and finite element method results.

Fig. 5 shows the influence of the surface layer thickness, H2, on the fundamental frequency of
the beam. The delaminations are symmetrically located about the beam center (d ¼ 0:0). The
fundamental frequency is normalized with respect to the frequency of an undelaminated beam.
For the constrained mode, o=o0 decreases in phase I, with the lowest frequency occurring at
Table 1

Non-dimensional fundamental frequency (l2) of a clamped–clamped isotropic beam with a midplane delamination

Delamination length, a=L Present cons and free Analytical [1] FEM [23]

0.00 22.37 22.39 22.36

0.10 22.37 22.37 22.36

0.20 22.36 22.35 22.35

0.30 22.24 22.23 22.23

0.40 21.83 21.83 21.82

0.50 20.89 20.88 20.88

0.60 19.30 19.29 19.28

0.70 17.23 17.23 17.22

0.80 15.05 15.05 15.05

0.90 13.00 13.00 12.99
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Table 2

Non-dimensional mode 2 frequency (l2) of a clamped–clamped isotropic beam with a midplane delamination

Delamination length, a=L Present cons and free Analytical [1] FEM [23]

0.00 61.67 61.67 61.61

0.10 60.81 60.76 60.74

0.20 56.00 55.97 55.95

0.30 49.00 49.00 48.97

0.40 43.89 43.87 43.86

0.50 41.52 41.45 41.50

0.60 41.04 40.93 41.01

0.70 40.82 40.72 40.80

0.80 39.07 39.01 39.04

0.90 35.39 35.38 35.38

Table 3

Non-dimensional mode 3 frequency (l2) of a clamped–clamped isotropic beam with a midplane delamination

Delamination length, a=L Present cons and free Analytical [1] FEM [23]

0.00 120.90 120.91 120.68

0.10 120.83 120.81 120.62

0.20 118.87 118.76 118.69

0.30 109.16 109.04 109.03

0.40 93.59 93.57 93.51

0.50 82.29 82.29 82.23

0.60 77.69 77.64 77.64

0.70 77.18 77.05 77.12

0.80 75.43 75.33 75.39

0.90 69.19 69.17 69.16
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H2 ¼ H=4: This is because, the bending stiffness of the delaminated beams, EI2 þ EI3 þ EI4;
decreases in phase I and has the lowest value when H2 ¼ H=4: The decrease, however, is less
significant for ao0:5L: In phase II, o=o0 increases which is due to the increasing bending stiffness
of the delaminated beams. For the free mode (phase I) with thin surface layers (H34H2), o=o0

increases rapidly. A kink is observed for the curves a40:4L at a location near H2 ¼ H=4; after
which o=o0 increases relatively slowly (phase II). The reason is that, for H24H=4; H3oH=4;
thus beam 2 is thicker than beam 3 (partially constrained mode). Beam 3 vibrates first and pushes
beam 2. The push weakens beam 2 and slows the increase in the frequency. The partially
constrained mode and the constrained mode frequencies converge at H2 ¼ H=2: This is because,
when H2 ¼ H=2; H3 ¼ 0; which results in a single midplane delamination where the free mode
and the ‘constrained mode’ frequencies are identical [2,7].

The free mode mode shapes (H2oH=4) and the partially constrained mode mode shapes
(H24H=4) for the circled geometries in Fig. 5 are computed and shown in Fig. 6. Three types of
vibration modes are observed, local, mixed and global vibration modes. In a local vibration mode,
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one or two of the beams 2, 3 and 4 will have much higher amplitude than the rest of the beams, in
a mixed vibration mode, the amplitudes of the beams 2, 3 and 4 are comparable, and in a global
vibration mode, the amplitudes of beams 2, 3 and 4 are almost equal. When the delamination is
located before the kink in Fig. 5, a local vibration mode is observed (Fig. 6a). When the
delamination is located near the kink but before the transition point H2 ¼ H=4; a mixed vibration
mode is observed (Fig. 6b), where beams 2, 3 and 4 vibrates freely and have different transverse
deformations. When the delamination is located near the kink but after the transition point, a
mixed vibration mode is observed (Fig. 6c), however, beam 3 is constrained by the thicker beam 2
and the two beams vibrate in a constrained manner. When the delamination is near midplane, a
global vibration mode is observed (Fig. 6d), this is because the thickness of beams 2 and 4 are
almost the same. The opening in the mode shape further explains the difference between the
constrained mode frequency and the free mode or partially constrained mode frequency. For a
large opening, the difference between the two frequencies is large (Fig. 5). For a small opening, the
difference between the two frequencies is small.

Fig. 7 compares the present double delaminations analysis with earlier single delamination
analysis. Single midplane delamination (H2 ¼ H3 ¼ H=2) is chosen to compare with the double
delaminations. The formulation of the single delamination has been done before [1,2]. Their
analysis is reproduced to calculate the fundamental frequency. Two cases H2 ¼ H3 ¼ H=4; H4 ¼

H=2; and H2 ¼ H3 ¼ H4 ¼ H=3 for the double delaminations are chosen for the present analysis.
For H2 ¼ H3 ¼ H=4; H4 ¼ H=2; the frequencies for the free and partially constrained modes are
identical since the transverse deformations of beams 2 and 3 are identical. For H2 ¼ H3 ¼ H4 ¼

H=3; the frequency for the free and partially constrained and constrained modes are identical
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since the transverse deformations of beams 2, 3 and 4 are identical. The delaminations are located
at the center of the beam (d ¼ 0:0). For short delaminations (ao0:3L), o=o0 is not sensitive to a.
o=o0 decreases slowly up to a value a=L of about 0.5, after which o=o0 decreases rapidly.

The mode shapes for the circled geometries in Fig. 7 are shown in Fig. 8. Fig. 8(a) compares the
three types of delaminations for a ¼ 0:3L; while Figs. 8(b–e) for a ¼ 0:5L; a ¼ 0:6L; a ¼ 0:8L and
a ¼ 0:9L; respectively. The configurations are scaled to similar magnitudes to facilitate
comparison. For single delamination H2 ¼ H3 ¼ H=2; beams 2 and 3 deforms identically. For
double delaminations H2 ¼ H3 ¼ H=4; H4 ¼ H=2; beams 2 and 3 deforms identically. For
double delaminations H2 ¼ H3 ¼ H4 ¼ H=3; beams 2, 3 and 4 deforms identically. Figs. 8(b, c)
show the largest difference in the configuration amongst Figs. 8(a–e), which corresponds to
medium length delaminations (a ¼ 0:5L; 0:6L) in Fig. 7. Furthermore, Figs. 8(b, c) display mixed
vibration modes, since the magnitudes of the beams 2, 3 and 4 are comparable. Figs. 8(d, e)
display local vibration modes, which corresponds to very long delaminations (a ¼ 0:8L; 0.9L),
since the amplitudes of beams 2 and 3 are much higher than the amplitude of beam 4.

Fig. 9 shows the variation of the fundamental frequency with the surface layer thickness, H2,
for a clamped–clamped beam. A new slenderness ratio, R ¼ o0=o2; is introduced, where o0 ¼

ð4:732=L2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI0=ðr0A0Þ

p
is the fundamental frequency of the undelaminated beam and o2 ¼

ð4:732=a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI2=ðr2A2Þ

p
is the fundamental frequency of the surface beam 2 (Fig. 1(a)). The

subscripts 2 and o denote the surface beam 2 and the undelaminated beam, respectively. For
homogeneous beams, R ¼ ða=LÞ2=ðH2=HÞ: R ¼ 1 represents the case when the vibration mode is
mixed, for Ro1; a global vibration mode and for R41; a local vibration mode. For the
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constrained mode, o=o0 decreases rapidly after a threshold value H2 of about 0.1H and decreases
slowly after about 0.3H. With a higher R, o=o0 decreases more rapidly. For the free and partially
constrained modes, the decrease in the frequency varies in three phases. In phase I (free mode),
beams 2, 3 and 4 vibrate freely, and R determines an almost constant o=o0: The slight decrease of
o=o0 is caused by the relatively weakened constraint at the two ends of beam 2 (Fig. 3a), since
beam 2 is thickened in relation to the whole beam. Curve R ¼ 1 has the largest decrease in o=o0:
In the transition phase II (partially constrained mode), H24H3; beam 3 vibrates first and pushes
beam 2 and weakens it, thus o=o0 decreases rapidly. In phase III, the push by beam 3 is weaker
and o=o0 stabilizes.

Fig. 10 shows the dominating influence of the slenderness ratio R on the fundamental
frequency of the beam. The (H3 H4) couples label the crowded five curves by their order.
There are two groups of curves H34H2 and H24H3; where curves in group H34H2 represent
the free mode and curves in group H24H3 represent the partially constrained mode. The two
groups of curves correspond to the two phases in Fig. 5, where phase I (free mode) and
phase II (partially constrained mode) have different characteristics. For low R, global vibration
modes dominate and the influence of the delaminations vanishes. A good approximation
of o=o0 can be obtained for high slenderness ratio (R41:5). Since for each group, the curves are
close to each other. The normalized frequency o=o0 can be assumed to depend on the slenderness
ratio only within each group. It is worth noting, however, that the dependence is different for
the two groups.

Figs. 11 and 12 show the influence of the spanwise locations, d=L; of the delaminations on the
fundamental frequency of a beam. Due to the symmetry of the problem, only d=L40:0 is shown.
At d=Lo0:05 o=o0 decreases slowly, after which o=o0 decreases rapidly. This can be explained
by the decrease in the differential stretching as the delaminations move towards the beam end.
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The bending moment contribution from the differential stretching represented by the second term
on the left-hand side of Eq. (15) is proportional to the difference between the slopes at the two
ends of the delaminations ðW 0

1ðx2Þ � W 0
5ðx3ÞÞ: For a slight movement of the delaminations

towards the beam end, the decrease in the difference between the two slopes is less. However, the
decrease becomes more significant as the delaminations moves further away from the beam center
towards the beam end. This difference also decreases as the delamination lengths increase, which
explains the slow decrease in o=o0 for a=L ¼ 0:6L; 0.7L. Fig. 12 further shows that the difference
between the constrained mode and free mode frequencies decreases as d=L increases, which means
that the mode shape displays a larger opening when the delaminations are near the beam center
and smaller opening when near the beam end.

Only delaminations of equal lengths are analyzed here. In general, delaminations do not have
equal lengths. However, one may envelop another, especially when the delaminations are due to
impact, in which case the present solution can be used as either an upper bound or a lower bound
solution if the common lengths are taken to be either the short or the long delamination. Apart
from being the solution of a basic delamination vibration problem, the solution can also serve as a
benchmark test case for other general numerical/approximation schemes for multiple delamina-
tion vibration problems.
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4. Conclusions

The vibration of beams with double delaminations has been solved analytically without
resorting to numerical approximation. The beam is found to vibrate together in a constrained
mode, or independently in a free mode, or in a mixed partially constrained mode depending upon
the relative thickness of the delaminated layers of the beam. A new slenderness ratio is introduced
and is shown to dominate the vibration behavior of the beam. However, the dominance is
different for the constrained mode, the free mode, and the partially constrained mode. Global,
mixed or local vibration modes occur depending upon the slenderness ratio of the surface layer.
The sensitivity of the natural frequency towards the depth, length, and spanwise location of the
delamination and the relative slenderness ratio increases rapidly after some threshold values of the
depth, the length, the spanwise location or the slenderness ratio.

The results are only for a homogeneous beam. When the laminates are of different materials,
it is expected that the quantitative results will be different. However, the trends observed
on varying the depth, the length and the spanwise location of the delamination are expected to
hold true.
References

[1] J.T.S. Wang, Y.Y. Liu, J.A. Gibby, Vibration of split Beams, Journal of Sound and Vibration 84 (1982) 491–502.

[2] P.M. Mujumdar, S. Suryanarayan, Flexural vibrations of beams with delaminations, Journal of Sound and

Vibration 125 (1988) 441–461.

[3] J.J. Tracy, G.C. Pardoen, Effect of delamination on the natural frequencies of composite laminates, Journal of

Composite Materials 23 (1989) 1200–1215.

[4] J.S. Hu, C. Hwu, Free vibration of delaminated composite sandwich beams, AIAA Journal 33 (1995) 1911–1918.

[5] D. Shu, H. Fan, Free vibration of a bimaterial split beam, Composites: Part B 27 (1996) 79–84.

[6] M.-H.H. Shen, J.E. Grady, Free vibrations of delaminated beams, AIAA Journal 30 (1992) 1361–1370.

[7] H. Luo, S. Hanagud, Dynamics of delaminated beams, International Journal of Solids and Structures 37 (2000)

1501–1519.

[8] A. Zak, M. Krawczuk, W. Ostachowicz, Numerical and experimental investigation of free vibration of multilayer

delaminated composite beams and plates, Computational Mechanics 26 (2000) 309–315.

[9] A. Zak, M. Krawczuk, W. Ostachowicz, Vibration of a delaminated composite plate with closing delamination,

Journal of Intelligent Material Systems and Structures 12 (2001) 545–551.

[10] A. Chattopadhyay, A.G. Radu, D. Dragomir-Daescu, A higher order theory for dynamic stability analysis of

delaminated composite plates, Computational Mechanics 26 (2000) 302–308.

[11] A.G. Radu, A. Chattopadhyay, Dynamic stability analysis of composite plates including delaminations using a

higher order theory and transformation matrix approach, International Journal of Solids and Structures 39 (2002)

1949–1965.

[12] N. Hu, H. Fukunaga, M. Kameyama, Y. Aramaki, F.K. Chang, Vibration analysis of delaminated composite

beams and plates using higher-order finite element, International Journal of Mechanical Sciences 44 (2002)

1479–1503.

[13] H. Chai, W.G. Knauss, C.D. Babcock, Observation of damage growth in compressively loaded laminates,

Experimental Mechanics 23 (1983) 329–337.

[14] A.C. Garg, Delamination—a damage mode in composite structures, Engineering Fracture Mechanics 29 (1988)

557–584.

[15] Z. Kutlu, F.-K. Chang, Modeling compression failure of laminated composites containing multiple through-the-

width delaminations, Journal of Composite Materials 26 (1992) 350–367.



ARTICLE IN PRESS

C.N. Della, D. Shu / Journal of Sound and Vibration 282 (2005) 919–935 935
[16] D. Shu, Vibration of sandwich beams with double delaminations, Composite Science and Technology 54 (1995)

101–109.

[17] D. Shu, Y.-W. Mai, Delamination buckling with bridging, Composite Science and Technology 47 (1993) 25–33.

[18] D. Shu, Y.-W. Mai, Buckling of delaminated composites re-examined, Composite Science and Technology 47 (1993)

35–41.

[19] D. Shu, Y.-W. Mai, Effect of stitching on interlaminar delamination extension in composite laminates, Composite

Science and Technology 49 (1993) 165–171.

[20] W. Lestari, S. Hanagud. Health monitoring of structures: multiple delamination dynamics in composite beams.

Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials

Conference and Adaptive Structures Forum, St. Louis, MO, April 1999.

[21] S. Lee, T. Park, G.Z. Voyiadjis, Vibration analysis of multiple-delaminated beams, Composites: Part B 33 (2002)

605–617.

[22] F. Ju, H.P. Lee, K.H. Lee, Free-vibration analysis of composite beams with multiple delaminations, Composites

Engineering 4 (1994) 715–730.

[23] J. Lee, Free vibration analysis of delaminated composite beams, Computers and Structures 74 (2000) 121–129.

[24] F. Ju, H.P. Lee, K.H. Lee, Finite element analysis of free vibration of delaminated composite plates, Composites

Engineering 5 (1995) 195–209.

[25] M. Cho, J.-S. Kim, Higher-order zig-zag theory for laminated composites with multiple delaminations, Journal of

Applied Mechanics 68 (2001) 869–877.

[26] S.H. Kim, A. Chattopadhyay, A. Ghoshal, Characterization of delamination effect on composite laminates using a

new generalized layerwise approach, Computers and Structures 81 (2003) 1555–1566.

[27] S.H. Kim, A. Chattopadhyay, A. Ghoshal, Dynamic analysis of composite laminates with multiple delaminations

using improved layerwise theory, AIAA Journal 41 (2003) 1771–1779.


	Vibration of beams with double delaminations
	Introduction
	Formulation
	Free mode
	Constrained mode

	Results and discussions
	Conclusions
	References


